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Obijective of attacker: Attack algorithm [1]:
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[ITA. Madry,A. Makelov, L. Schmidt, D. Tsipras, and A.Vladu,“Towards Deep Learning Models Resistant to Adversarial Attacks,” in Proceedings of International Conference on
Learning Representations (ICLR), 2018. 3
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Min-max optimization in adversarial training (AT) [I]:

Outer loop: optimize mlIl “j{ma}{ »C(f(aj _I_ 5)7 y)}

DNN with adversarial =<, f ( ) )
samples : ] r— > Inner loop: find adversarial
T samples
Natural Adversarial
Adversarial trainin
Benign 92.7 % 79.4% (-13.3%) ) g
Adversarial  0.8%  43.7% (+41.9%) sacrifice performance

on clean data
Natural Training (NT) and AT on CIFAR 10 (data

reported in original paper [1])

[ITA. Madry,A. Makelov, L. Schmidt, D. Tsipras, and A.Vladu,“Towards Deep Learning Models Resistant to Adversarial Attacks,” in Proceedings of International Conference on
Learning Representations (ICLR), 2018. 4
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Key idea: dynamically change the DNN at each inference step so

that the adversarial information at step t is not effective at step t+|
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HyperNet [1]: a neural network to generate weight Wc for CNN classifier dynamically
CNN: a target network to perform RF signal classification
Attacker:Adversary to create noise O based on the gradient VL(f(Wc, x), Y’)

Context: Random vector to trigger the weight generation as well as calibrate the output y to y’

[11 D.Ha,A. M. Dai,and Q.V. Le, “HyperNetworks,” in International Conference on Learning Representations (ICLR), 2017. 6
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Training:

a set of context C; = [C}, C7]is randomly sampled from U(—-1,1)
HyperNet H(-) : C; — Wg generate weights for target CNN

CNN fWCz(> . T — Y maps input to label space

logit calibration y; = C’Z-l * Y + C',L-2 to map output to diversified space

ok~ owbd-~

Ensemble learning
1
L=—) Lilfyi(@),y)
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can combine other defensive training such as AT
and TRADES [ 1] to further improve robustness

[1T H. Zhang,Y.Yu, ]. Jiao, E. Xing, L. El Ghaoui, and M. Jordan,“Theoretically Principled Trade-off between Robustness and Accuracy,” in Proceedings of International
Conference on Machine Learning (ICML), pp. 7472-7482, PMLR, 2019. 7



Teacher-Student Design

Context

—»| MLP 256 [ CNN Ix3,64
—»| MLP 256 [ CNN Ix3,64
—»| MLP 256 [ CNN Ix3,128
» MLP 256 1 CNN Ix3, 128
—»| MLP 256 | CNN Ix3,256
—»| MLP 256 [ CNN Ix3,256
—»| MLP256 | FC256x24

The size of Hypernetwork is ~M times

larger (e.g. 256) than a single target CNN

Stage |:
Pretraining

Stage 2:
Regression

Stage 3:
Finetune
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Effectively reduce the size by ~32 times
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Robustness-Performance Trade-off:

AT and TRADES reduce accuracy on clean
data by 27.92% and 6.65%

Robustness:
48% improvement compared
to naturally trained DNN;
| 6% compared to AT;
22% compared to TRADES;
Accuracy:
Increase by 1%, 8% and 3%

respectively.
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Ablation Study:

TABLE I: Accuracy of HyperAdv and its static counterparts

NT AT TRADES * The dynamic HyperAdv has best
Clean PGD Clean PGD  Clean PGD
CNN 9420 372 6628 5042 8755 43.16 robust accu racy

HyperAdv-R 9520 45.02 7401 6398 9037  60.92

HyperAdv-S 9511 2370 7274 50.10 9127 4308 e The ensemble HyperAdv
HyperAdv-E 9634 2788 7836 6134 9279 49.50

performs best on clean data

Computational Cost of Adversary: CNN ===z HyperAdv —
NT:3.31 — 19.83 iterations é 20 R ———— -
AT: 19.83 — 22.66 iterations I I I 77 NN B 77\ ]
TRADES: 17.64 — 210l iterations = 5} | | /7 | 4 | |

NT AT TRADES
10
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* More scalable HyperNetwork design
 Latency and energy consumption

 Real-world implementation

11
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Code and pretrained models are available:

https://github.com/Restuccia-Group/HyperAdv 15


https://github.com/Restuccia-Group/HyperAdv

